
GPU Acceleration of the Advanced Regional
Prediction System (ARPS)

Benjamin A. Whetstone
∗†

Computer Science
Coastal Carolina University

P.O. Box 261954
Conway, SC 29528-6054

bawhetst@coastal.edu

Varavut Limpasuvan
Chemistry and Physics

Coastal Carolina University
var@coastal.edu

D. Brian Larkins
Computer Science

Coastal Carolina University
blarkins@coastal.edu

ABSTRACT
A recent breakthrough in high-performance computing is
the application of general-purpose graphics processing units
(GPGPUs) to scientific computing. This paper presents a
case study of a project to reformulate mathematical com-
putations within a weather model, the Advanced Regional
Prediction System (ARPS), to work with GPGPU hard-
ware. This hardware typically consists of hundreds of simple
processors, compared to the conventional central processing
units (CPUs) with fewer than eight processors (as found
in most computers). While GPGPUs are extremely power-
ful, their usage requires specialized programming to achieve
their full potential. As a forecasting tool, ARPS is capa-
ble of producing very high-resolution weather simulations.
Using ARPS to simulate detailed atmospheric disturbances
necessitates the use of large-scale distributed-memory paral-
lel computing clusters. The adaptation of a critical numer-
ical kernel within ARPS for GPGPUs resulted in a six-fold
speedup over the CPU version. These optimizations dra-
matically reduce simulation time, thereby leading to faster
weather predictions that may benefit society as well as the
research community.

Keywords
GPGPU, weather forecasting, finite differences method, ARPS

1. INTRODUCTION
The devastating impact of violent weather systems has

motivated the development of more advanced and compre-
hensive numerical weather prediction models. Improvements
made to these models and the computational systems that
run them provide disaster planners with better and faster

∗Corresponding author.
†Undergraduate Student.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

predictions that can potentially save lives. Weather mod-
eling relies heavily on iterative, computationally intensive
differential equation solvers that are amenable to concur-
rent execution, such as multi-grid methods, finite element
analysis, and finite difference methods (FDM) [1, 8, 9].

The application of these techniques necessitates the use of
large-scale distributed-memory parallel computing clusters.
Using weather models with these systems has been the ac-
cepted practice and is well understood. Recently, General-
Purpose Graphical Processing Units (GPGPUs) have pro-
vided an opportunity for significant performance improve-
ments. However, their usage requires specialized program-
ming and a deep architectural understanding to realize their
full potential. Several solver-based techniques used in paral-
lel weather modeling have been successfully applied to work
with GPGPU hardware [2, 3, 9].

Created at the University of Oklahoma, the Advanced
Regional Prediction System (ARPS) has been developed
as a parallel stormscale atmospheric modeling framework
since 1995 [7]. ARPS relies on a set of finite-difference
method kernels to provide realtime data analysis and assimi-
lation. ARPS has been adapted to work on large distributed-
memory systems and its performance has been studied and
optimized extensively for these architectures [10]. To be
of practical usefulness, a balance must exist between the
model’s ability to produce high-resolution comprehensive
simulations against the run-time (wall clock) of the simu-
lation process. Detailed and accurate predictions that are
generated too late to be of practical use are no better than
fast predictions of limited realism. Therefore, any improve-
ment in raw program performance has the impact of shifting
this balance, allowing models to be run faster, at finer scale,
and with better accuracy – all within a reasonable compu-
tational timeframe.

In this paper, we describe the application of the numer-
ical finite-difference method kernels used within the ARPS
framework to utilize GPGPU hardware. Our approach is
based on the insights that (1) the prior work studying the
performance bottlenecks within ARPS would be useful in
determining opportunities for GPGPU acceleration and (2)
that the numerical kernels within ARPS were viable candi-
dates for the GPU platform.

This work makes the following contributions: First, we
detail the analysis of the ARPS kernels with respect to is-
sues impacting GPGPU system architecture. Second, we
describe the implementation of GPGPU kernels and discuss

∂(ρ̄ ∗ u)

∂t
= −[ADV (u)] −

∂(p′ − αDiv)

∂x
+ (ρ̄fv − ρ̄f̃w) +Du,

∂(ρ̄ ∗ v)

∂t
= −[ADV (v)] −

∂(p′ − αDiv)

∂y
+ ρ̄fu+Dv,

∂(ρ̄ ∗ w)

∂t
= −[ADV (w)] −

∂(p′ − αDiv)

∂z
+ ρ̄B + ρ̄f̃u+Dw,

∂(ρ̄ ∗ θ′)
∂t

= −[ADV (θ
′
)] − ρ̄w

∂θ̄′

∂z
+Dθ + Sθ,

∂p′

∂t
= −

[
u
∂(p′)

∂x
+ v

∂(p′)

∂y
+ w

∂(p′)

∂z

]
+ρ̄gw−p̄C2

s

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
,

∂(ρ̄ ∗ qψ)

∂t
= −[ADV (qψ)] +

∂(ρ̄vqqψ)

∂z
+Dθ + Sθ,

where

Div =

[
∂ρ̄u

∂x
+
∂ρ̄v

∂y
+
∂ρ̄w

∂z

]
and

ADV () = ρ̄u
∂()

∂x
+ ρ̄v

∂()

∂y
+ ρ̄w

∂()

∂z
.

Figure 1: Predictive Atmospheric Parameter Equa-
tions used within ARPS

the mitigation of challenges (e.g. low temporal locality) that
arose. Lastly, we provide an experimental validation of our
approach resulting in a speedup of just over six times the
CPU-only implementation.

2. BACKGROUND

2.1 ARPS Climate Modeling System
The Advanced Regional Prediction System (ARPS) is a

numerical modeling suite that has been developed by the
Center for Analysis and Prediction of Storms at the Uni-
versity of Oklahoma. Currently in its fifth major revision,
ARPS is a widely-used simulation tool for both basic scien-
tific research as well as operational numerical weather pre-
diction [8]. ARPS was originally implemented in FORTRAN
77 and has since been updated to use FORTRAN 90. It has
been extensively adapted to operate on distributed-memory
parallel computers using both MPI and PVM.

The ARPS model uses the equations of state for an at-
mosphere containing water constituents, shown in Figure 1.
These equations provide values for u, v, w, θ′, p′, and qψ which
correspond, respectively, to the x, y, and z components of the
velocity, potential temperature and pressure perturbations,
and the six categories of water constituents (water vapor,
cloud water, rainwater, cloud ice, snow and hail). These
predictive equations are solved using finite-difference meth-
ods within the simulation as detailed in [8].

The equations in Fig. 1 are solved using finite difference
methods as applied to an offset Arakawa C-grid using a
mode-splitting time integration, comprising both large timestep
and small timestep integrations (to minimize sound waves).
The equations themselves are represented in a curvilinear

coordinate system that is projected onto a plane tangent to
or intersecting the earth’s surface (e.g. Lambert and Mer-
cator projection). Solving for the desired parameters using
these equations consumes a substantial amount of the run-
time for a typical ARPS simulation.

The solutions for the key predictor parameters are derived
using the above equations in conjunction with sets of large
two- and three-dimensional arrays corresponding to the x, y,
and z dimensions of the grid size (resolution and scale), spec-
ified by the user in the simulation domain configuration. The
large number of equations, in conjunction with the quantity
of terms in each equation leads to unique challenges when
considering GPU-based acceleration.

2.2 Related Work
The applicability of GPGPU hardware to scientific com-

puting problems has been well studied in the literature. Pre-
vious work has shown successful application of GPU accel-
eration to common numerical techniques such as multigrid,
FEM, and FDM [2, 3, 9].

Within weather models, GPU acceleration has been exten-
sively applied to the prominent modeling tool Weather and
Research Forecast (WRF) as described in [5, 6]. While GPU
acceleration has never been applied to the ARPS modeler,
it has been the subject of much analysis and parallel opti-
mization for use on shared-memory SMP and distributed-
memory clusters, as described in [7, 8].

3. ANALYSIS

3.1 ARPS Analysis
The ARPS system is a very mature, highly optimized sci-

entific simulation code, comprising nearly half of a million
lines of FORTRAN 77 and FORTRAN 90 code for the core
program. The core numerical kernels within ARPS have
been optimized for both efficient sequential and parallel ex-
ecution. While these previous efforts make it difficult to find
new performance improvements, prior work has focused on
optimizing for traditional CPU-based systems. These ac-
tivities helped us identify the performance hotspots within
ARPS in conjunction with our own profiling and timing
analysis.

ARPS utilizes both an atmospheric model (relying on the
differential equations listed above) as well as a two-layer soil
model and several other model components computed dur-
ing the modeling process. Preliminary performance analysis
showed that of the entire ARPS simulation pipeline, the
largest single contributor to overall run-time performance
was the differential equation solver for the atmospheric pa-
rameters, at approximately 25% of total run-time.

The computational structure of the FDM solver code con-
sists of a sequence of twenty-five distinct loops operating
on a number of multidimensional arrays. In total, there
are 31 distinct similarly-sized three-dimensional arrays de-
fined by the grid size specified for simulation. These arrays
are replicated over every MPI process participating in the
computation. A typical resolution used is 5-20 km in the
horizontal direction and 0.5km in the vertical. There are
another nine two-dimensional arrays and a number of scalar
values used throughout the process. In practice, real-world
problem sizes are roughly 300×300 grid points in the x and
y dimensions and 100 points in the z dimension. Research
runs typically use larger problem sizes of 1000 points in each

tema = (dtsml1*tacoef)**2 * wpprt*g/cpdcv
temb = (dtsml1*tacoef)**2 * dzinv

DO k=3,nz -2
DO j=1,ny -1

DO i=1,nx -1
pk = tem4(i,j,k)*tema*pbzi(i,j,k)
nk = tem4(i,j,k)*temb*rstwi(i,j,k)

rhostru(i,j,k)= (-nk+pk) * (tem1(i,j,k-1)
+ tem2(i,j,k-1))

rhostrw(i,j,k)= (nk+pk)*(tem1(i,j,k)
- tem2(i,j,k))

rhostrv(i,j,k)= 1
+nk*(tem1(i,j,k)+tem2(i,j,k)

-tem1(i,j,k-1)+ tem2(i,j,k-1))
+pk*(tem1(i,j,k)+tem2(i,j,k)

+tem1(i,j,k-1)-tem2(i,j,k-1))
END DO

END DO
END DO

Listing 1: Partial ARPS 3D Solver Kernel (loop14)

of the x, y, and z domains which results in a single array re-
quiring 3.8 GB for a single-precision realization and twice
that for double-precision data.

Of the loops used in the solver, one-quarter of the time
spent inside the solver code was within a single kernel loop
block, loop14, which is shown in Listing 1. As the other
loops within the solver code follow a very similar structure,
we chose to isolate this kernel as the principal candidate
for GPGPU acceleration. The remainder of this paper will
focus on the optimization of this specific kernel as these re-
sults should be directly applicable to both the remaining
loops within the solver as well as a number of other compu-
tationally intensive kernels throughout ARPS.

3.2 Data Locality
The innermost loop of the kernel of interest (loop14), is

comprised of several computations involving eleven distinct
array elements in eight arrays for each step. For large runs
(9003 grid points), the total memory accessed during this
step is approximately 21.7 GB in each MPI process. The
FORTRAN code for this loop is shown in Listing 1.

An examination of the loop code reveals that each itera-
tion of the loop consists of eight multiplication operations
and twelve add/subtract operations (excluding array index
calculations). Further analysis reveals that of the nine ar-
rays involved in this computation, seven have no temporal
locality whatsoever. The two remaining arrays (tem1 and
tem2) have somewhat better locality, in that each element
is accessed six times (three as temijk and three as temijk−1)
over the execution of the nested loops.

The relatively small amount of computation and large
number of array elements needed for each loop iteration lead
to very poor temporal locality. This mismatch in computa-
tion versus memory communication is the principal chal-
lenge in accelerating performance for the ARPS kernel and
is exacerbated by the need to transfer the array data to
and from the GPU for computation. The remaining kernels
within the solver code also exhibit similarly poor locality
properties. The loop structure of loop14 exhibits good spa-
tial locality, but it must be handled carefully within the
context of the GPGPU architecture as is discussed below.

G1 G3G2

G4 G6G5

G8 G9G7

t1 t2 t3

t4 t5 t6

t7 t8 t9

Figure 2: Initial data decomposition and thread
mapping for ARPS FDM kernel.

G1
G2
G3
G4
G5
G6
G7
G8
G9

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 t2 t3 t4 t5 t6 t7 t8 t9

contiguous memory locations

t1 t2 t3 t4 t5 t6 t7 t8 t9 iteration

Figure 3: Coalesced memory transfer layout and
thread mapping.

4. IMPLEMENTATION
Adapting loop-based numerical kernels for execution on

GPU hardware requires concern for many architectural nu-
ances and constraints not needed for conventional CPU-
based programming. GPUs are typically connected via the
PCIe bus and require explicit memory copy operations prior
to the concurrent execution of a numerical kernel. Obtain-
ing the highest performance from the GPU hardware entails
balancing multiple dimensions of constraints, including the
GPU memory hierarchy, register usage, and data access pat-
terns [4]. In this section we describe several transformations
made to port the ARPS kernel to a version that is able to
extract meaningful benefit from GPU acceleration. To ac-
complish this, the FORTRAN-based ARPS kernel needed to
be ported to CUDA, the programming model for executing
code on NVIDIA GPGPUs.

4.1 Computation Mapping
Several factors must be taken into consideration when

transforming a sequential loop that executes on the CPU
into a parallel loop that executes on the GPU. First, the se-
quential nested loop structure must be mapped to the GPU
threads that will concurrently execute the kernel code. Sec-
ond, the data access pattern must be adapted to work within
the constraints of the memory limitations and transfer con-
ventions used on the GPU.

CUDA kernel tasks are organized in terms of threads and
blocks, with a thread being the basic logical unit of com-
putation and a block being a collection of threads. Kernel

invocation requires the specification of parameters for block
size (threads per block) and a total number of blocks to be
allocated. The way that CUDA threads are scheduled and
are executed on the GPU are heavily dependent on assign-
ing appropriate values for the block mapping of threads and
can have a dramatic impact on performance [4].

The parallel execution of a GPU kernel happens in a hi-
erarchical manner, where the iteration space of the compu-
tation may be mapped onto multidimensional blocks each
consisting of a fixed number of threads. The initial imple-
mentation mapped each block to a single two-dimensional
slice of the arrays, which would be processed by multiple
groups of threads working on each block. An example of
this initial approach is shown in Figure 2, where each plane
of the array is processed by a 3× 3 group of threads.

A problem that arises with the ARPS FDM kernels is
that the arrays for single-process CPU implementation are
too large to reside within the GPU global memory. If the
data set that is being processed within the loop is greater
than the available memory, the loops are tiled along the
x-dimension in order to fit on the GPU. Tiling introduces
some additional complexity in the kernel, both in additional
operations to compute the tiled indices and in handling the
partially filled final tile(s).

An additional constraint on CUDA-based GPU kernels is
that DMA memory transfers are not legal from pageable
memory. As a result, pinned memory is required for high-
performance memory transfers – especially important given
the memory-bound nature of the ARPS kernels. The use of
pinned memory within ARPS can be problematic given the
large arrays involved when the simulation domain is large.
If the arrays are too large to be allocated into non-pageable
memory blocks, then they are simply allocated from main
memory and copied into pinned buffers prior to transfer to
the GPU device.

4.2 Optimization
Our initial results with the tiled GPU version described

above demonstrated only a modest speedup compared to
the CPU implementation. Further analysis revealed several
opportunities to improve our implementation and achieve
higher performance.

4.2.1 Maximizing Resource Usage
When launched, each block of threads is mapped onto

streaming multiprocessors (SM). Each SM consists of a vari-
able number of streaming processors (SP) or CUDA cores,
depending on the particular GPU in use. Each core on the
SP is responsible for the execution of a single thread. For
architectural reasons, threads within a block are scheduled
in groups of 32 threads called warps. Specifying a block size
that is not a multiple of warp size results in idle SP cores
for any partially filled warps. There are maximum limits for
each of the number of blocks, warps, and threads per SM.

There is also an architecture-specified maximum num-
ber of warps that can be scheduled to an SM. For recent
NVIDIA GPUs (CUDA compute capability 3.5+), the limit
is 64 warps per SM. If the number of warps scheduled on a
single SM is below this limit, then it will not be fully uti-
lized. For example, if 32 warps are in use on a single SM,
then it is operating at only half its full capacity or is at
50% occupancy. The maximum number of threads per SM
is maxSM = maxwarps× 32 threads/warp. There are also

host
device

host
device

computation

1input: K 2input: K

K 1 K 2

output: K1 output: K2

3input: K 4input: K

K 3

Figure 4: Computation and communication overlap
for GPU kernels.

limitations on the number of blocks per SM as well, all lead-
ing to a multidimensional constraint problem in determin-
ing how to maximize GPU occupancy. In order to achieve
maximum occupancy within an SM, the threads per block
parameter must be set so that the threads per SM limit is
not exceeded, the blocks per SM limit is not exceeded, and
the warps per SM limit is matched.

Maximum occupancy may be achieved at multiple block
sizes. For example, block sizes of 128, 256, 512, and 1024 all
allow for a total of 2048 threads per SM, which is the max-
imum amount possible. Therefore, additional factors other
than SM occupancy must be considered when attempting
to find the optimal block size for a given algorithm. Among
these factors is thread load balance, also called warp diver-
gence. Since work is completed on the GPU in warps, a
warp will not complete and allow a new warp to execute un-
til all threads within the warp have completed their required
computation. If work is not evenly distributed among the
threads in a warp, then some threads will be idle while wait-
ing for warps with more work to complete. A smaller block
size helps to mitigate this problem since blocks are not al-
lowed to complete until their all of their component warps
have completed. By using a smaller block size, there are
fewer warps in a block, thus decreasing the amount of warps
that must be waited on if warp divergence occurs. Selecting
a block size too small will eventually reach the blocks per
SM limit and reduce the utilization of the SM.

For the ARPS algorithm being studied, it was important
to maximize SM occupancy. Therefore, the only block sizes
considered were 128, 256, 512, and 1024 due to the fact that
these block sizes allow for the maximum amount of thread
occupancy per SM. Of these choices, a block size of 128 was
selected in order to decrease the penalty for warp divergence
which is present in the ARPS kernel.

4.2.2 Memory Coalescing
Our initial task decomposition suffered from a poor mem-

ory access pattern given the constraints of the GPU archi-
tecture. Recall that each block of threads corresponds to a
plane in a three-dimensional array. Consider the example
decomposition shown in Figure 2. Each thread group con-
sists of 9 threads, iterating over nine 3×3 sections. The GPU
hardware automatically coalesces contiguous memory ac-
cesses up to the size of a warp. With a row-major layout, this
results in three coalesced memory accesses: read{t1, t2, t3},
read{t4, t5, t6}, and read{t7, t8, t9}. The thread mapping
was reorganized into the pattern shown in Figure 3. By
restructuring from a two-dimensional thread mapping to a
one-dimensional (row-based) map the kernel is able to coa-

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

)

Problem Size (in x, y, z dimensions)

CPU
GPU

Figure 5: Runtimes of CPU and GPU versions

lesce the maximum amount of array accesses:
(read{t1, t2, t3, t4, t5, t6, t7, t8, t9}).

4.2.3 Asynchronous Memory Transfers
CUDA supports asynchronous memory transfers which

permit computation to occur simultaneously with host-device
memory transfers. This overlap hides some of the penalty
from the decreased throughput associated with host-device
memory transfers since the memory transfer and computa-
tion occur in parallel. In this context, the concept of asyn-
chronous memory transfers is similar to instruction pipelin-
ing. The disadvantages of asynchronous memory transfers
are similar to pipelining. Stalls or bubbles may form due to
data dependencies. If the data to be operated on is not in
GPU memory, the computation must wait until that data is
in memory to begin.

Communication and computation overlap can be imple-
mented by using concurrent kernels. It is possible to split
data flow from one kernel into two or more separate invo-
cations of the same kernel, as shown in Figure 4. Adding
additional sources of data flow allows one or more kernels to
compute while host-device memory transfers are occurring.
The benefit of this optimization is dependent on the spe-
cific hardware architecture of the GPU used. Some GPUs
may have separate copy engines for host → device and
device → host transfers. Additionally, kernel completion
signals may be delayed, which can reduce overlap due to
the queuing up of device → host transfers. Modern CUDA
GPU cards (CUDA compute capability 3.5+) have hard-
ware support to reduce the impact of kernel launch order
and memory transfer interleaving.

Given that the ARPS algorithm requires a large amount of
data per computation, has very little temporal locality, and
is memory bound, the use of asynchronous memory transfers
is paramount for optimizing the ARPS algorithm to run on
a GPU.

5. EVALUATION

5.1 Experimental Setup
The experiments were performed on three separate CUDA-

capable GPU computer configurations:
The Stampede cluster at the Texas Advanced Computing

Center (TACC) contains CUDA capable nodes that consist
of 2 quad-core Intel Xeon processors at 2.7 GHz, 32 GB of
system memory, and an NVIDIA K20 GPU. The K20 is a

 0

 1

 2

 3

 4

 5

 6

 7

100 200 300 400 500 600 700 865 900

Sp
ee

du
p

R
el

at
iv

e
to

 C
PU

Problem Size (in x, y, z dimensions)

K20
C2075

GTX480

Figure 6: Speedup of various GPUs

 0

 1

 2

 3

 4

 5

 6

 7

100 200 300 400 500 600 700 865 900

Sp
ee

du
p

R
el

at
iv

e
to

 C
PU

Problem Size (in x, y, z dimensions)

1
2
4

Figure 7: Speedup of varying concurrent kernels

CUDA compute capability 3.5 GPU with 8 GB memory.
Additional testing was performed on two CUDA worksta-

tions owned by Coastal Carolina University .
The first has 2 Intel Xeon processors at 2.2 GHz, 64 GB

of system memory, and 2 NVIDIA Tesla C2075 GPUs. The
C2075 is a CUDA compute capability 2.0 GPU with 6 GB
memory.

The second has one Intel Xeon processor at 3.6 GHz, 8
GB of system memory, and 1 NVIDIA GTX 480 GPU. The
GTX 480 is a CUDA compute capability 2.0 GPU with 1.5
GB memory.

The development environment consisted of the GNU GCC
host-code compiler and the NVIDIA nvcc compiler toolchain.
The TACC Stampede cluster codes were compiled with GCC
4.4.7 and CUDA 5.0. The machines local to CCU used the
GCC 4.8.2 and CUDA 5.5 compilers.

Experiments were run using a CUDA implementation of
loop14 with varying input resolutions from 100× 100× 100
to 900×900×900. The input consists of 6 three-dimensional
single-precision floating point arrays and the output consists
of 3 three-dimensional single-precision floating point arrays.
The total input size ranges from 19.07 MB to 13.58 GB, and
the total output size ranges from 11.44 MB to 8.15 GB.

5.2 Experimental Results
The CPU and GPU versions of the FDM solver algorithm

previously described were run with a threads per block pa-
rameter of 128 and four concurrent kernel invocations per
call. These results are shown in Figure 5. The results show
that the GPU implementation is significantly faster than

the CPU version when the input resolution is greater than
5003. A speedup of 2.6× faster than the CPU-only version
was achieved at an input resolution of 1003. This amount of
speedup on a relatively small input size shows that CUDA
may also be beneficial to use on models with small prob-
lem sizes. The maximum speedup achieved over the CPU
version was 6× at the 9003 resolution. As resolution is in-
creased, the runtimes of the CPU-only version trend upward
at a much higher rate than the GPU version. This indicates
that the GPU version has greater scalability as compared
to the CPU version. These results show that a significant
speedup can be obtained by running on the GPU – even for
memory-bound computations.

Next, the experiment was run on three different NVIDIA
GPUs: a K20, a C2075, and a GTX 480. The computer
hosting the GTX 480 was only equipped with 8 GB of sys-
tem memory, and was not able to allocate enough pinned
memory above the 5003 input resolution. The results from
this experiment can be seen in Figure 6. As shown, the K20
had the highest maximum speedup at 6×. The maximum
speedup for the C2075 was 5×, and for the GTX 480, it
was 4.2×. Near the edge of the graph, as input increases,
the disparity between K20 speedup and C2075 speedup in-
creases. This greater scaling trend is to be expected as the
architecture of the K20 has improved greatly over the Tesla
207X series for GPGPU computations.

Then, the experiment was run with three different imple-
mentations of the CUDA code: 1 CUDA kernel per call, 2
concurrent CUDA kernels per call, and 4 concurrent CUDA
kernels per call. The results are shown in Figure 7. The
single kernel version was only able to achieve a maximum
speedup of 3.9× faster than the CPU version. The 2 and 4
kernel versions were able to achieve 6.1× and 6× speedups
respectively. This disparity illustrates the importance of uti-
lizing multiple kernels to hide the slow memory transfers.
The multi-kernel versions are also trending upwards at the
end of the graph while the single kernel version remains level
at 3.9×. This indicates that the multiple kernel versions are
more scalable than the single kernel version.

6. CONCLUSION
Providing detailed and timely regional weather predic-

tions is an important task which can reduce the expense of
weather-related damage and help save lives. This paper has
described the acceleration of the ARPS weather modeling
tool using GPGPU programming techniques. The adapta-
tion of a portion of the finite difference kernel to the GPU
has resulted in up to a six-fold improvement in the program
performance.

We believe that this work has several promising leads and
we intend to pursue research on this application. While our
focus was on a portion of the FDM solver module, we be-
lieve that this work is applicable to a large number of the
remaining kernels used throughout the ARPS code. Prelimi-
nary analysis yields a large number of numeric kernels within
ARPS that share a similar structure to those optimized in
this paper.

In the future, we aim to investigate additional approaches
in mitigating the poor temporal locality exhibited in these
kernels. Since some of the FDM solver loops share interme-
diate arrays, techniques such as loop fusion may be helpful
in improving the communication/computation balance and
therefore result in better overlap.

7. ACKNOWLEDGEMENTS
This work was supported internally at Coastal Carolina

University through the Research Enhancement Grant pro-
gram sponsored by the Office of the Provost. We would
also like to thank the NVIDIA Corporation for its generous
donation of hardware for this project. This work used the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Founda-
tion grant number OCI-1053575.

8. REFERENCES
[1] R. Bermejo, J. Carpio, J. Diaz, and P. Sastre. A Finite

Element Algorithm of a Nonlinear Diffusive Climate
Energy Balance Model. In A. Camacho, J. Diaz, and
J. Fernandez, editors, Earth Sciences and
Mathematics, Pageoph Topical Volumes, pages
1025–1047. Birkhauser Basel, 2008.

[2] M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and
S. Turek. Efficient Finite Element Geometric
Multigrid Solvers for Unstructured Grids on GPUs .
Technical report, Fakultät für Mathematik, TU
Dortmund, Jan. 2011. Ergebnisberichte des Instituts
für Angewandte Mathematik, Nummer 419.

[3] G. A. Gravvanis, C. K. Filelis-Papadopoulos, and
K. M. Giannoutakis. Solving Finite Difference Linear
Systems on GPUs: CUDA based Parallel Explicit
Preconditioned Biconjugate Conjugate Gradient type
Methods. The Journal of Supercomputing,
61(3):590–604, 2012.

[4] D. B. Kirk and W.-M. W. Hwu. Programming
Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2010.

[5] J. Michalakes and M. Vachharajani. GPU acceleration
of numerical weather prediction. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–7, 2008.

[6] J. Mielikainen, B. Huang, H. Huang, and M. Goldberg.
Improved GPU/CUDA Based Parallel Weather and
Research Forecast (WRF) Single Moment 5-Class
(WSM5) Cloud Microphysics. Selected Topics in
Applied Earth Observations and Remote Sensing,
IEEE Journal of, 5(4):1256–1265, 2012.

[7] A. Sathye, G. Bassett, K. Droegemeier, M. Xue, and
K. Brewster. Experiences using high performance
computing for operational storm scale weather
prediction. Concurrency - Practice and Experience,
8(10):731–740, 1996.

[8] A. Sathye, M. Xue, G. Bassett, and K. Droegemeier.
Parallel weather modeling with the advanced regional
prediction system. Parallel Computing,
23(14):2243–2256, 1997.

[9] Y. Wang, S. Chang, and J. Cogan. Application of a
Multigrid Method to a Mass-Consistent Diagnostic
Wind Model. Journal of Applied Meteorology,
44(7):1078–1089, July 2005.

[10] M. Xue, D. Wang, J. Gao, K. Brewster, and
K. Droegemeier. The Advanced Regional Prediction
System (ARPS), storm-scale numerical weather
prediction and data assimilation. Meteorology and
Atmospheric Physics, 82:139–170, 2003.

