Integrating Digital Logic Desigh and Assembly
Programming Using FPGAs in the Classroom

*

William M. Jones and D. Brian Larkins
Department of Computer Science and Information Systems
Coastal Carolina University
P.O. Box 261954, Conway, SC 29528-6054

ABSTRACT

Rising Field Programmable Gate Array (FPGA) market vol-
umes combined with increasing industrial popularity have
driven prices down and improved capability to the point
that FPGA hardware and development environments afford
academia the unique opportunity to embrace this technol-
ogy not only in specialized graduate-level courses, but also
across many of the courses of a traditional undergraduate
computer science curriculum.

We have begun adapting several of our undergraduate com-
puter science courses and associated laboratories to make
use of FPGAs as a common platform of instruction. In this
paper, we illustrate how to make use of FPGAs in courses
that cover digital logic design and assembly programming
while discussing some of the pro’s and con’s of their use.
We also provide a detailed discussion of a laboratory project
that integrates both assembly programming as well as digital
logic design in such a way that allows the student to perform
a trade-off analysis between using software in the place of
a purely hardware-based solution to a common interfacing
problem.

We conclude with an analysis of preliminary data gathered
via student surveys and find that the results support the use
of FPGA-based platforms in the undergraduate classroom.
By making use of FPGA-based systems, not only are stu-
dents exposed to a technology that is becoming much more
prevalent in industry, they also benefit from the dovetailing
of concepts and shorter learning curves between courses that
come from making use of a common target platform.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education

*Corresponding author.

©ACM, 2011. This is the author’s version of the work. It is

posted here by permission of the ACM for your personal use.
Not for redistribution. The definitive version was published
i ACM SE 11, ACM 978-1-4503-0686-7/11/03.

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are a type of
integrated circuit that contains a lattice of configurable logic
blocks and a hierarchical interconnection fabric that allow
the user to “program” the underlying logic structure and
functionality after manufacturing. An FPGA can generally
be configured to implement any logic function, and its overall
capability is primarily limited by the the number of available
logic blocks and size of communication fabric.

Due to their re-programmability, FPGAs have become inte-
gral components in a variety of fields ranging from rapid sys-
tem prototyping to high-performance distributed comput-
ing. Improvements in technology have given rise to FPGAs
with massive amounts of reprogrammable gates numbering
in the millions. This increased gate density has moved the
achievable design space from simple combinational and se-
quential circuits to full-blown computing systems. Rising
FPGA market volumes combined with increasing industrial
popularity have driven prices down and improved capability
to the point that FPGA hardware and development envi-
ronments afford academia the unique opportunity to em-
brace this technology not only in specialized graduate-level
courses, but also across many of the courses of a traditional
undergraduate computer science curriculum [1, 2]. Not only
have these forces made the physical hardware more accessi-
ble, the prevalence of quality development suites and IDEs
are making using FPGA-based prototyping systems a robust
and powerful teaching tool in the classroom [5].

We have adapted portions of our undergraduate computer
science curriculum and associated laboratories to accommo-
date making use of FPGAs as a central platform of instruc-
tion. At the present time, we currently make use of FPGA-
based platforms in our courses that deal with digital logic
design, assembly programming, computer architecture, and
compiler construction.

Our intention is that by making use of an FPGA-based sys-
tem across multiple courses, not only are our students ex-
posed to a technology that is becoming increasingly preva-
lent in the industry, they also benefit from the dovetailing of
concepts and shorter learning curves between courses that
come from making use of a common target platform. In ad-
dition to this general goal, of particular interest in this paper
is the notion of providing an integrated instructional plat-
form that enables students to devise multiple solutions to
a problem and to subsequently analyze the tradeoffs among

Figure 1: The use of breadboards and discrete 7400-
series IC chips to implement an unsigned 3-bit rip-
ple carry adder with binary and dual seven-segment
displays.

them, a goal central to computer science education.

In this paper, we briefly focus on how to make use of FP-
GAs in courses that cover digital logic design and assembly
programming while discussing some of the pro’s and con’s
of their usage. We also provide a detailed discussion of a
laboratory project that integrates both assembly program-
ming as well as digital logic design in such a way that allows
the student to perform a trade-off analysis between using
software in the place of a purely hardware-based solution to
a common interfacing problem. This experience allows the
student to conceptually evaluate the solution to the problem
along many dimensions and it also provides the opportunity
to explore the challenges faced through actual implemen-
tation. We conclude with an analysis of preliminary data
gathered via student surveys and find that the results sup-
port the use of FPGA-based platforms in the undergraduate
classroom.

2. DIGITAL LOGIC DESIGN

A traditional approach typically employed and one that we
previously used in the study of both combinational and se-
quential digital logic is the use of breadboarding and discrete
logic gates (Figure 1) to implement designs of concepts that
arise during lecture. This process generally begins with a
qualitative description of the behavior of the the underlying
circuit and then evolves to take on quantitative character-
istics as the student develops truth tables for the circuit or
device in question. Where possible, circuit minimization is
attempted manually via the judicious use of Karnaugh maps
or other techniques. Once a satisfactory set of Boolean ex-
pressions is obtained, the student will typically set about
implementing the circuit using a breadboard, a low-voltage
DC power supply, as well as a myriad of discrete logic gates
including but not limited to ANDs, ORs, NOTs, and flip-
flops. Where necessary, 1/O devices such as single-pole dou-
ble throw switches as well as LEDs (and potentially resistor
banks as well) are used in order to drive and observe the
behavior of the implemented circuit.

Figure 2: The Altera DE2 educational prototyping
board. Note the wide range of available peripheral
devices.

While this approach is certainly satisfactory in many cases,
several problems generally arise during its use. In particular,
students often suffer the consequences of hastily wired cir-
cuits by experiencing difficulties due to mis-wiring. Mistakes
such as polarity reversal and short circuits can lead to the
destruction of the integrated circuit chips used. Addition-
ally, even with careful assembly during the breadboarding
phase, a single misplaced wire can lead to hours of frustrat-
ing manual debugging.

Making matters worse is the prevalence of physically dam-
aged parts such as breadboards with an open-circuit back-
plane channel, burned-out LEDs and IC chips that invari-
ably become mixed in with those that function properly.
The burden of maintenance and inventory control can be-
come overwhelming for the department and infuriating for
students.

2.1 Transition to FPGA Platform

In order to overcome some of these challenges while simul-
taneously leveraging a powerful common development plat-
form, we have adopted the Altera DE2 FPGA-based proto-
typing board (Figure 2). This platform centers around an
FPGA that is sufficiently large as to enable all manner of
projects ranging from simple sequential and combinational
digital logic designs all the way to full-blown RISC embed-
ded soft processors (more on this in Section 8.1) [3, 6]. The
vast array of peripheral devices common to these platforms
allows them to be used in a variety of situations where inter-
facing with external devices is desired. Although we selected
the Altera DE2 board (around $270), many such educational
boards exist that feature FPGAs not only from Altera, but
also from other manufacturers, such as Xilinx [8], ranging in
capabilities and prices from around less than $100 to thou-
sands of dollars.

After making this transition, we still focus lecture time cov-
ering the fundamental concepts of Boolean algebra, truth-
tables, Karnaugh maps, minimization, and sequential state
machine design; however, instead of implementing the re-

@ Guare 1o

B File Bt View Project Asig

DEEE & L)

s

oy]

& Gometi P2
> RV Jg

e e O TR VAo S Rl Vil 210 e Vo] R
pevtioy :

M sGER T >0 Q@A e

=
[98 & @ | |nwm

Figure 3: Altera’s Quartus II IDE in schematic
block diagram mode. Here the student has drawn a
schematic that mirrors the design equations derived
from pencil-and-paper techniques. The circuit is re-
ceiving input from switches and is outputting to an
LED on the board. Courtesy of CS student Ruben
Villao.

sulting expressions manually on a breadboard, we have the
students make use of a freely available manufacturer-supplied
IDE (Figure 3) to schematically enter their designs and to
check for common wiring mistakes such as unused pins, short
circuits and open circuits. The students then compile their
designs targeting the FPGA fabric and load their designs
onto the prototyping board.

One of the major benefits of using the development board
is that designs are more easily debugged and changes that
are made in the IDE can immediately be recompiled and
reloaded into the FPGA. Aside from schematic input, stu-
dents quickly find that making use of hardware description
languages (HDLs) such as VHDL or Verilog can simplify
the tediousness of design entry. Although HDL languages
are extremely powerful in that behavioral descriptions can,
in many cases, be automatically compiled into synthesized
logic, we require students to make use of only Structural
HDL here, so that the learning process of fundamental dig-
ital logic remains.

3. ASSEMBLY PROGRAMMING

The typical approach we had previously been employing for
teaching assembly programming was through the use of soft-
ware simulators, in particular, either for the PEP/8 or SPIM
MIPS [7, 4]. One of the obvious benefits of using a simula-
tor for this purpose is the fact that free simulators abound
and can be run without any additional hardware directly on
the students’ own laptops. We have found that although
students are comfortable with this process, they lack the re-
alistic feedback of running their programs on an actual piece
of hardware where interfacing with simple external devices
such as displays and switches can provide a truly kinesthetic
experience.

3.1 Transition to FPGA Platform

By leveraging the same development platform and environ-
ment in assembly programming as we have for the digital
logic course, we are able to build on a technology with which
our students are already familiar. In doing so, not only do
we shorten their learning curve, we are able to provide the

4 Altera Monitor Program [Nios Il - HW08-beginSpring2010-CSCI210.srec [Paused] =NECIE X
Monitor Configuration Actions Windows Help
WME GeE 2mk ¢
Disassembly — X | Registers =
Goto instruction | Address (hex) or symbol name: Go Hide Reg Value
x0000102c c001 addi sp, op, Oed (-] “E E’(EEEEEEEE i
H x
i o, 0
i Pz Gich! rla 0x00000000
0x00001030 00 stw fp, O(sp) B S
wov fn, sp rie 0200000000
0400001034 2 aga 1p, op, zero B permt
ol Bt ris 0200000000 |
0x00001035 add 15, zero, zero 1o 0x00000000
ldw 6, -4(fp) # fetching n off stack into 6 Ll lezo 0x00000000
0x00001030 t 1 16, -4ifp) = 5 0200000000
mili 17, £6, 4§ 4°n iz in £7, emount used for Aln] | ||lez2 0x00000000
0400001040 01 mili o r7, o6, oxd 23 0200000000
addi 7, £, 4 # incr. for saving also the Rh et 0x00000000
0x00001044 addi x7, r7, Oxd bt OxEEEEEEEE
w 0200000000
_— =p 0z00001050
0x00001048 © 33 ret =l 0x0n001050; By
1=l lea
[l I
Disassembly | Breakpoints | Memary | Watches | Trace ra 0200001028 [+
Terminal — % | Info & Errors e
GTAG LIRS i catap Hphediuninn sab e CUsH-Blanter Connection established to GDB server at localhost:23g¢—|
[USB-01", device 1, instance 0x00 e T
Source code loaded.
INFO: Program Trace not enabled, because trace requirgz
[z D]
Info &Errors | GDB server |

Figure 4: Altera Monitoring Program in use debug-
ging student code.

opportunity to integrate concepts they have learned in their
digital logic course with those they are learning in their as-
sembly programming course. This is an interesting proposi-
tion because it joins together two disciplines that are often
quite disjoint in introductory laboratory settings.

Altera’s University Program provides an intellectual prop-
erty core for the NIOS processor, a 32-bit RISC MIPS-like
embedded processor that can be instantiated on the Altera
DE2’s FPGA [3]. By using a cross compiler and monitoring
program, the students are able to load and execute their as-
sembly programs remotely on the FPGA step by step from
their connected host laptops. As with the typical simula-
tors, the monitoring program allows the students to inspect
the contents of registers and memory, while also being able
to debug their programs using familiar GDB commands.

4. EXAMPLE DESIGN PROJECT

As part of departmental ABET accreditation, we have iden-
tified eleven overarching student learning outcomes (SLOs).
One of these key SLOs is as follows:

“The student will be able to apply mathematical foundations,
algorithmic principles, and computer science theory in the
modeling and design of computer-based systems through the
critical analysis of the tradeoffs involved in design choices.”

As such, we firmly believe that being able to devise multi-
ple solutions to a problem and subsequently to analyze the
tradeoffs among them is central to computer science edu-
cation. One such design choice that inevitably surfaces is
whether a software- or hardware-based solution to a given
problem is “better.” In order to allow us to explore this ques-
tion at an early point in the curriculum, we have devised a
project that allows our students to design two competing
solutions to the problem of driving two seven segment dis-
plays (SSDs) as the primary output device of an embedded
computing system.

The students are tasked with the responsibility of taking the

a

-l

/c

NIOSII
System

d
a

~\\\\ 0

e

Figure 5: Using minimized combinational logic to
implement the binary-to-HEX seven-segment dis-
play drivers (SSDDs). Here an 8-bit parallel I/0
port is instantiated on the NIOS system, where the
upper and lower nibbles map to their respective
drivers. In this case, the contents of the lower byte
of register R can be written directly to the I/O port
using an assembly primitive corresponding to “store
byte I/0.”

d

lower eight bits of the contents of a register and displaying
them in hexadecimal format on the two SSDs. As such, the
system should be able to correctly display all 256 possible
numbers ranging from 0x00 to 0xFF. The students are then
provided assistance to lead them toward the following two
potential solutions.

In the case of both the hardware and software approaches,
the students make use of the NIOS embedded soft processor
that is also instantiated alongside their designs in the FPGA
fabric. Using a cross compiler and monitoring program on
their laptops, the students are able to write the necessary
assembly code to output the contents of the register to the
parallel I/O port, whether it is connected directly to the
SSDs or via their display driver logic (Figures 5 and 7).

4.1 The Hardware Approach

In the hardware approach, the students are expected to ex-
plore the fundamental underlying issue here, which is to
derive expressions that will correctly drive all seven inde-
pendent LEDs that make up the SSDs. Although such chip
models as the 7447 are already available in the IDE library
that will perform binary to BCD or binary to HEX display
decoding, we do not allow the students to make use of them
in this case. Furthermore, they must come to the realization
that the same hardware they derive for one display will also
work for the second display (Figure 5). This helps reinforce
the concept of design reuse.

Solving this problem amounts to populating a 16 row truth
table with the appropriate 1’s and 0’s that will assert the
correct LEDs within the SSD. After the minimization phase,
the students input their design schematics into the IDE,
compile and then load their designs onto the prototyping
board.

<= or ->

0x0 | 0x40 0x00 [0x0040
0x1| 0x79 0x01 [0x0079
0x2| 0x24 0x02 | 0x0024
4 8 m1
. 8 . 16
. .
4 8 HO

OxE| 0x06 (H1<<8) |HO OxFE | 0x4E06

OxF| Ox4E 16 OxFF | Ox4E4E

R&0OxO0F
(R&OXFF) >>4

LUT4->8 SSD16 R&OXFF LUT8->16 SSD16

Figure 6: Using lookup tables (LUTSs) to map the
lower byte of register R to the appropriate 16-bit
active-low bit patterns of the dual seven-segment
display. Although only 14 bits are required to drive
both displays, we use 16 since this matches the width
of both the parallel I/0 port on the NIOS as well as
the half-word “sthio” assembly instruction.

4.2 The Software Approach

After having finished the purely hardware-based implemen-
tation of the SSD drivers, the students have now seen a
functioning project and are familiar with the challenges as-
sociated with building these structures from the ground up
as well as the relative simplicity of the assembly code that,
once acquired, merely loads the least significant byte of a
given register onto the SSD displays. At this point, they are
presented with the reminder that now they must implement
the same behavior without the use of their hardware SSD
drivers by connecting the NIOS parallel 1/O ports directly
to the individual LEDs that constitute the SSDs.

A common software technique that is used to map numbers
to symbol data is through the use of a lookup table. In this
case, the least significant byte of register R must be properly
displayed in hexadecimal format on two independent SSDs.
The students are shown how to determine each of the bit
patterns required for each of the possible 16 HEX charac-
ters for a single display, taking into account that the SSDs
present on the Altera DE2 are active low. They are then
encouraged to sketch out physically how the operations will
work (Figure 6) as well as to write a sample C program (List-
ing 1) that mimics the behavior of the assembly code they
will write in order to ensure they understand the mechanics
of the bit-masking and shifting in conjunction with accessing
the LUT. In this way, issues such as function prologue and
epilogue are omitted from the thought process temporarily,
as this is a concept students are generally learning at the
same time in the associated course.

This transition in emphasis from hardware to software de-
sign generally presents a challenge for the students. Al-
though the concept of lookup tables is not foreign to them
at this stage of their education, judiciously using bit-wise
and shifting operators generally is. In particular, although
they have been exposed to these operators in their introduc-
tory programming classes (in C) and have been refreshed as

1 |hword retrieveSSD16(int R) {

2 X = R & O0xOF // get first nibble

3 Y = R & 0xFO // get second nibble

4 Y =Y > 4 // move into position

5 LOW = LUT[X] // get pattern for SSD1
6 HIGH = LUT[Y] // get pattern for SSD2
7 HIGH = HIGH << 8 // move into position
8 SSD16 = HIGH | LOW // merge patterns

9 return SSD16

10 |}

Listing 1: C-like structure of function to take con-
tents of register R, retrieve the correct bit patterns
from the lookup table, and coalesce them into a 2-
byte result. Although this excerpt is given in C, the
students are required to write the corresponding as-
sembly code

to their meaning and behavior in the assembly programming
class, they are unfamiliar with how to apply them to solve
this problem.

Although this project presents a number of concurrent chal-
lenges that cover both basic hardware design as well as
fairly detailed assembly programming, many students have
expressed that this project allowed them to tie together con-
cepts that had previously seemed disjoint. In addition, our
intention is to also allow the students to make comparisons
between the two solutions and to critically analyze the trade-
offs involved.

4.3 Tradeoff Analysis

After completing both parts of this project, the students
are asked to comment on the benefits and drawbacks of
each approach. This typically evokes responses related to
how difficult each part was relative to the other in terms of
their own effort. In most cases, students feel that the hard-
ware solution is “easier” to implement because it avoids the
intricacies of dealing with the lookup table and bit-wise op-
erations. However after we move past this initial response,
when pressed further to evaluate each design, they begin to
critically analyze the issues involved. Chief among the ideas
discussed are:

e Flexibility The LUT approach is more flexible in that
the characters displayed on the SSDs can easily be
changed by simply altering the contents of the array.
This is in stark contrast to the challenge of re-deriving
Boolean expressions for a similarly altered truth table.

e Speed The hardware approach allows the display to
be driven with far fewer instructions because there are
fewer operations to perform on the contents of register
R and there are no memory accesses to any LUT. Fur-
thermore, there is no on-chip memory usage for storing
a LUT, which leaves more real estate on the FPGA for
other hardware to be instantiated, if desired.

e Time versus Space Using a larger LUT allows for
half as many assembly operations; however, in doing
so, we use 16 times as much memory to store the array.

i

#input number to display

Sw Bralolue stavt

stw ra, 0(sp)

stw r5, 4(sp)

stw r6, 8(sp)

ldw r5, -8(sp) #pop param value

ldw r6, -4(sp) #pop param addr

addi sp, sp, 12 #pointer catch up
- prolouge end

#push ra on stack
#callee-save push
#callee-save push

srli r8, r5, 4 #get 1st byte on its own
1ldbu r8, SsD(r8) #load the ssd value
194 slli r8, r8, 8 #shift back to left position
Obtain data from switches andi r5, r5, 15 #bitmask the left byte

Drive SSDs W/ software ldbu r5, SsSD(r5) #store ssd on reg

7 or r8, r8, r5 #combine the two

stwio r8, 0(ré) #load onto hex01 ret value
Stack management i
st # == epilogue start
Shlftlljg 201 subi sp, sp, 12 #pointer catch up
Masking 202 1ldw ra, 0(sp) #pop ra from stack

1ldbu r5, 4(sp) #restore value pop

1ldbu ré, 8(sp) #restore value pop
== epilogue end

ret

Look up tables

Figure 7: IDE in schematic mode, with the NIOS
parallel I/O ports directly connected to the seven
segment displays and switches. A fragment of stu-
dent code is shown that accesses the lookup table
once. Courtesy of CS student Yosi Benezra.

This sort of tradeoff analysis reinforces the concept of match-
ing a design with a specific set of requirements. For exam-
ple, in this case, the requirements they were given did not
include the need to provide for a changing set of characters
to be displayed on the SSDs; therefore, the hardware solu-
tion might seem to be the “better solution” given that it is
both faster and requires less on-chip memory. However, the
software solution provides a modicum of flexibility that more
easily accommodates incomplete or changing specifications,
an unfortunately common occurrence in the field.

S. SURVEY RESULTS

During the Fall 2010 semester, a short, anonymous, and vol-
untary survey was given to students in two different courses,
CSCI 210 and 310, using BlackBoard. CSCI 210 is a course
that covers digital logic design, computer organization, and
introduces assembly programming while CSCI 310 further
covers assembly programming and advanced logic design
with a significant focus on computer architecture.

Of interest here are three questions from each surveyed course.
Question 1 was different in each course; however, questions
2 and 3 were the same for both courses.

e [Q1-210] Compared to lecture alone, has the usage of
the NIOS processor and Altera Monitoring Program
helped you better understand how assembly program-
ming works?

(a) none, (b) not much (c) somewhat (d) a lot

e [Q1-310] Has your prior experience with the Altera
DE2 and the NIOS processor helped you to better un-
derstand how hardware and software interact?

(a) none, (b) not much (c) somewhat (d) a lot

e [Q2] Given the choice, do you feel it is more rewarding
to see your programs execute on the Altera DE2 boards

Survey Results
Course | Question | (a) | (b) | (¢) | (d)
Q1 012 5] 2
CSCI 210 Q2 7 0 2 | NA
Q3 1[4][NA
Q1 0 0 2 8
CSCI 310 Q2 61 0] 4 NA
Q3 5 0 5 | NA

Table 1: Summary of the results of the Fall 2010 sur-
vey of both CSCI 210 and 310 students. Across both
courses, of the students that had a preference, 100%
preferred the use of the Altera DE2 board over a
simulator for learning assembly programming while
90% preferred the Altera DE2 over breadboarding.

or on a software simulator?
(a) Altera DE2, (b) simulator, (c) no preference

e [Q3] Given the choice, would you prefer to implement
and debug your digital logic designs using a bread-
board and discrete logic gates or by using the Quar-
tusII IDE and Altera DE27?

(a) Altera DE2, (b) breadboard, (c) no preference

The results of the survey are presented in Table 1. Nine of
the 14 students enrolled in CSCI 210 responded to the sur-
vey, while 10 out of the 17 enrolled in CSCI 310 responded.
Note that all enrolled students in CSCI 310 were previously
exposed to the Altera DE2 and NIOS processor in the pre-
requisite course, CSCI 210.

The general trend across both courses is that, of the students
that had a preference, 100% preferred the use of the Altera
DE2 board and the Altera monitoring program over the use
of a simulator for executing their assembly programs. To
a lesser extent, 90% of those that responded preferred the
use of QuartusIl and the Altera DE2 over the use of bread-
boards and discrete logic gates for implementing their digital
logic designs. Additionally, 78% of CSCI 210 students indi-
cated that using the NIOS processor combined with the Al-
tera Monitoring program played a significant role in helping
them to better understand assembly programming over lec-
ture alone. Moreover, a full 100% of CSCI 310 respondents
indicated that the new FPGA platform played a significant
role in helping them understand how software and hardware
interact.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we illustrate how to make use of FPGA-based
platforms in courses that cover digital logic design and as-
sembly programming while discussing the pro’s and con’s of
their use. We also provide a detailed discussion of a lab-
based project that integrates both assembly programming
as well as digital logic design in such a way that allows the
students to perform a trade-off analysis between using soft-
ware in the place of a purely hardware-based solution to a
common interfacing problem.

We also provide the results of a survey across two different
courses where students have been exposed to the FPGA-

Figure 8: Students making use of a schematic-based
IDE to design digital logic circuits for instantiation
and deployment on FPGA development boards.

based platform for the purpose of learning both digital logic
design as well as assembly programming. The results are en-
couraging and, based on our experiences, we plan to expand
the use of these platforms across other courses in our cur-
riculum. In fact, we have already begun expansion into our
compiler construction course by making the NIOS processor
the target architecture.

By making use of these powerful FPGA-based systems across
multiple courses, not only are students exposed to a technol-
ogy that is becoming much more prevalent in many different
areas in industry, they also benefit from the connecting of
concepts and shorter learning curves between courses that
come from making use of a common target platform.

7. REFERENCES

[1] T. S. Hall and J. O. Hamblen. Using fpgas to simulate
and implement digital design systems in the classroom.
In American Society of Engineering Education:
Southeast Section Conference, 2006.

[2] M. Holland, J. Harris, and S. Hauck. Harnessing fpgas

for computer architecture education. In

Microelectronics Systems Education, pages 12—13, 2003.

Nios ii embedded processors for education.

http://www.altera.com/education/univ/software/nios2/.

[4] D. A. Patterson and J. L. Hennessy. Computer
organization and design: the hardware/software
interface. Elsevier Morgan Kaufmann, 4 edition, 2008.

[5] T. E. Salem, R. Rakvic, R. Voigt, and S. Firebaugh.
Curricula enhancement and thematic learning via
undergraduate design projects. In The 36th IEEE
Annual Frontiers in Education Conference, pages 1-5,
2006.

[6] A. A. Thompson and R. A. Ebel. The military academy
reduced instruction set computer. In American Society
of Engineering Education: Mid-Atlantic Section
Conference, 2009.

[7] J. S. Warford. Computer Systems. Jones & Barlett

Learning, 4 edition, 2009.

Xilinx university program.

http://www.xilinx.com/university/.

3

8

